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SUMMARY

An e�cient full approximation storage (FAS) Multigrid algorithm is used to solve a range of droplet
spreading �ows modelled as a coupled set of non-linear lubrication equations. The algorithm is fully
implicit and has embedded within it an adaptive time-stepping scheme that enables the same to be
optimized in a controlled manner subject to a speci�c error tolerance. The method is �rst validated
against a range of analytical and existing numerical predictions commensurate with droplet spreading
and then used to simulate a series of new, three-dimensional �ows consisting of droplet motion on
substrates containing topographic and wetting heterogeneities. The latter are of particular interest and
reveal how droplets can be made to spread preferentially on substrates owing to an interplay between
di�erent topographic and surface wetting characteristics. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The focus of this paper is the e�cient numerical solution of �ows involving droplet spread-
ing through the use of a fully implicit, time-adaptive Multigrid algorithm. Such �ows are
of enormous signi�cance in many branches of science and commerce, industrial applications
including, for example, the deposition of coatings and inks, direct patterning of functional
layers during microship production, spreading of pesticides and the �ow of oil in heat ex-
changers [1, 2]. The same also arise in other diverse areas of science ranging from biology,
where they form membranes on mammalian lungs and tear �lms in the eye, to geology where
they feature in lava �ows [3].
Problems are modelled using a long wave, or lubrication, approximation with the advan-

tage that proceeding in this way reduces the dimensionality by one and yields more tractable
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fourth-order partial di�erential equations (p.d.e.s) than encountered in a full Navier–Stokes
formulation. Despite this simpli�cation, signi�cant obstacles remain to be overcome, princi-
pally due to the sti�ness introduced by surface tension and the need to resolve short length
scales close to wetting lines. Similarly, explicit time stepping numerical schemes are of lim-
ited value since they su�er an impractical restriction apropos the time step, �t, which must
be at most O(�4), where � is the spatial resolution, to avoid numerical instability [4].
Several authors have solved the time-dependent lubrication equations successfully in a wide

variety of physical contexts. Prominent among these have been the studies of Schwartz and
co-workers who have eased the severe restriction on time step noted above by employing
alternating-direction implicit (ADI) algorithms which, for three-dimensional �ows, use alter-
nating sweeps in each direction so that only a banded system of equations need be solved
at each time step [5]. These schemes, often referred to as time-splitting [6], have been used
to analyse a range of problems including, for example, those due to the e�ects of substrate
curvature and surface tension gradients on the thinning of coatings [7], droplet motions on het-
erogeneous substrates with materials having widely di�erent equilibrium contact angles [8, 9]
and gravity- and surface shear stress-driven thin coating �ows [10]. In all of these studies,
spreading motion is facilitated by specifying a thin energetically stable wetting layer, or pre-
cursor �lm, of thickness h∗ over the surface of the substrate, an approach that has signi�cant
computational advantages over alternative, slip models [11, 12].
In contrast to time-splitting, Multigrid methods are fast solvers, originally developed for the

solution of elliptic p.d.e.s. Their essence is to use a simple iterative technique as a smoother,
not as a solver, on a sequence of computational grids to reduce high frequency error com-
ponents on a particular grid [13]. They have been applied to increasingly di�cult systems
of p.d.e.s and are now commonly used to solve the discrete analogues arising from a wide
variety of �ow problems for which major improvements in e�ciency and robustness are being
achieved [14–17]. The full approximation storage (FAS) variant of the Multigrid method for
non-linear equations [18] is implemented to solve a suitable �nite di�erence approximation
to the time-dependent lubrication equations for the �ow of droplets over substrates either
with or without wetting and=or the presence of topographic heterogeneities. Embedded within
the algorithm is an e�cient, adaptive time-stepping scheme, based on Heun’s second-order
predictor–corrector method [19], which automatically adjusts the time step subject to a spec-
i�ed error tolerance enabling �t to be optimized in a controlled manner.
A compact derivation of the governing equations to be solved is presented for complete-

ness, followed by details of the underpinning numerical method(s) adopted for their solution.
The Multigrid solver is �rst validated against a range of analytical and previously published
numerical predictions for droplet spreading phenomena and then extended to simulate a va-
riety of spreading �ows on substrate with di�erent wettability characteristics and containing
topographic features.

2. MATHEMATICAL MODEL

Figure 1 is a schematic snap-shot of the �ow of a droplet, H (X; Y; T ), over a topographic fea-
ture, S(X; Y ), of amplitude S0 and lengths LT and WT with respect to the reference co-ordinate
(X; Y ) on a substrate inclined at an angle � to the horizontal. Its aspect ratio A=WT=LT . The
�uid is Newtonian and incompressible, of density � and viscosity �, and Marangoni e�ects are

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1161–1186



TIME ADAPTIVE MULTIGRID SOLUTIONS OF DROPLET SPREADING 1163

Z

X

Y

α

(0,0)

g

S0

W T
L

T

(X1 ,Y1)

H(X,Y,T)

S(X,Y)

Figure 1. Schematic snap-shot of the �ow of a droplet, H (X; Y; T ), over a topography, S(X; Y ), on a
substrate inclined at an angle � to the horizontal, showing a section through the droplet for the sake of

clarity, in the X –Z plane and the parameters de�ning the topography.

ignored so that the surface tension, �, is also constant. The motion of the droplet is governed
by the time-dependent Navier–Stokes equations, viz

�
(
@U
@t
+U:∇U

)
=−∇P + �∇2U + �g (1)

∇:U =0 (2)

where U =(U;V;W ) and P are the �uid velocity and pressure, respectively, and g= g(sin �;
0;− cos �), where g=9:81ms−2 is the acceleration due to gravity. Taking H0 as the character-
istic droplet thickness and L0 as the extent of the substrate, it is assumed that �=H0=L0 is small
so that the Navier–Stokes equations can be simpli�ed using the long-wave, or lubrication,
approximation. All analyses are performed and results presented in terms of corresponding
non-dimensional (lower case) variables, the key ones being:

h(x; y; t) =
H (X; Y; T )

H0
; s(x; y)=

S(X; Y )
H0

; (x; y)=
(X; Y )
L0

; z=
Z
H0

p=
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��
;

(
u; v;

w
�

)
=(U;V;W )

T0
L0
; t=

T
T0
; T0 =

�L0
��3

(3)

where the time scale T0 is that derived by Orchard [20] for the levelling of surface distur-
bances. Note that since the substrate surface is given by the topography function s(x; y) so that
the droplet lies between z= s and h+ s. Under the above non-dimensionalization, neglecting
terms of O(�2) or higher, the Navier–Stokes equations reduce to

@2u
@z2

=
@p
@x

− Bo
�
sin � (4)
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@2v
@z2

=
@p
@y

(5)

@p
@z
=−Bo cos � (6)

where Bo=�gL20=� is the Bond number measuring the relative importance of gravitational to
surface tension forces. These equations are solved subject to the condition of no-slip at the
surface of the substrate and zero tangential stress at the free surface of the droplet, namely

(u; v)= (0; 0) at z= s and
@u
@z
=
@v
@z
=0 at z= h+ s (7)

Equations (4) and (5) integrated twice with respect to z over the droplet thickness z ∈ [s; h+s]
and, subject to the above boundary conditions, yield

u=
(
@p
@x

− Bo
�
sin �

)
(z − s)

(
1
2
(z − s)− h

)
(8)

v=
(
@p
@y

)
(z − s)

(
1
2
(z − s)− h

)
(9)

The time-dependent lubrication equation for the evolution of the droplet thickness is obtained
by conserving mass throughout the �ow, viz

@h
@t
= − ∇:Q (10)

where Q=
∫ h+s
s (u; v)T dz. Integrating Equations (8) and (9) to form Q and substituting into

Equation (10) yields the following equation in terms of the pressure �eld p:

@h
@t
=
@
@x

[
h3

3

(
@p
@x

− Bo
�
sin �

)]
+
@
@y

[
h3

3

(
@p
@y

)]
(11)

In common with the work of others [8, 9] a disjoining pressure term is employed to alleviate
the singularity at wetting lines. This model assumes a thin precursor �lm of thickness h∗

ahead of the same and relates the observed contact angle for partially wetting systems to
intermolecular forces that become important for liquids of submicroscopic dimensions [9].
The disjoining pressure term, �(h), is given [21] by

�(h)=
(n− 1)(m− 1)(1− cos�e)

h∗(n−m)�2
[(
h∗

h

)n
−

(
h∗

h

)m]
(12)

where n and m are the exponents of the interaction potential and �e(x; y) is the equilibrium
contact angle. Note that the disjoining pressure term is zero for a fully wetting system since
�e =0.
Experimental evidence suggests that, in practice, h∗ lies in the range 1–100 nm [22] so

that currently it is not feasible to use realistic h∗ values in computations. This restriction has
two rami�cations. The �rst and most important is due to the fact that accurate representation
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of a wetting line and, in particular, avoidance of negative �lm thicknesses in their vicinity
requires that the spatial resolution should be of the same order of magnitude as h∗. This and
related issues are discussed in detail by Bertozzi [4] and have led to the development of new
numerical schemes which ensure that the �lm thickness remains positive without requiring
excessive mesh re�nement near wetting lines [23]. The second problem relates to the fact
that h∗ is the principal determinant of spreading rate [9]. However, although inability to use
a su�ciently small h∗ in computations leads to a systematic over-prediction of spreading rate,
this di�culty can normally be compensated for by using an analytic correction [8].
The pressure �eld throughout the droplet is obtained by integrating Equation (6) with

respect to z where the constant of integration (setting the pressure datum to atmospheric) is
given by

p= − ∇2(h+ s)−�(h) on z= h+ s (13)

where the ∇2(h + s) term is the small slope approximation to the surface curvature of the
thin �lm, leading to

p= − ∇2(h+ s)−�(h) + Bo cos �(h+ s− z) (14)

It is important to note that since the lubrication approximation is formally valid only for �ows
for which the free surface slope is small, its accuracy could be a�ected by the steep slopes
of the topographies considered here. However, recent studies [24, 25] and comparison with
experiment [2, 34] show lubrication theory to be remarkably robust in such circumstances
providing the associated Reynolds and Capillary numbers are not too large. Note also that the
form of Equation (11) ensures that the z dependence in Equation (14) has no in�uence on
the evolution of the �lm thickness and it is therefore omitted from subsequent analysis.
Previous workers have simply substituted Equation (14) into Equation (11) to yield fourth-

order time-dependent lubrication equations purely in terms of the �lm thickness, h. However
in the present study it is found advantageous to solve the coupled non-linear equation set for
h and p, Equations (11) and (14), respectively, since the second-order di�erential operators
are simpler to discretize and a substrate wettability function �e(x; y), for variably wettable
substrates, can be imposed without imposing constraints on its di�erentiability [8].
Equations (11) and (14) are solved subject to symmetry boundary conditions at the edges

of the computational domain, namely

@p
@n
=
@h
@n
=0 (15)

where n is the normal to the substrate boundary.

3. NUMERICAL METHOD

3.1. Spatial discretization

All problems are solved on a square computational domain with (x; y)∈�=(0; 1)× (0; 1)
using a Multigrid approach. The �nest grid level (i.e. the actual grid on which the solution is
desired) has (2kf+1) nodes in each direction so that the spatial co-ordinates of its grid points
are given by xi=(i − 1)=2kf and yj=(j − 1)=2kf in terms of the �ne grid density parameter
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kf. In the present study kf ∈ [6; 10] corresponding to grids at the �nest level with between 65
and 1025 nodes in each direction. Equations (11) and (14) are approximated spatially using
central di�erences [5, 26] leading to the following second-order accurate spatial discretizations:

@hi; j
@t

=
1
�2

[
h3

3

∣∣∣∣
i+(1=2); j

(pi+1; j − pi; j)− h3

3

∣∣∣∣
i−(1=2); j

(pi; j − pi−1; j)

+
h3

3

∣∣∣∣
i; j+(1=2)

(pi; j+1 − pi; j)− h3

3

∣∣∣∣
i; j−(1=2)

(pi; j − pi; j−1)
]

− Bo
�
sin �h2i; j

(
hi+1; j − hi−1; j

2�

)
+O(�2) (16)

pi; j +
1
�2 [(hi+1; j + si+1; j) + (hi−1; j + si−1; j) + (hi; j+1 + si; j+1)

+ (hi; j−1 + si; j−1)− 4(hi; j + si; j)] + (n− 1)(m− 1)(1− cos�e)
h∗(n−m)�2

×
[(
h∗

hi; j

)n
−

(
h∗

hi; j

)m]
− Bo(hi; j + si; j) cos �+O(�2)=0 (17)

for each (i; j) in the computational domain, where � is the spatial increment (�=2−kf for the
�nest grid level) and the h3=3|i±(1=2); j, h3=3|i; j±(1=2) terms are the pre-factors associated with
the discretization. Here results are obtained using Zhornitskaya and Bertozzi’s [23] Positivity
Preserving Scheme for which the pre-factors in Equation (16) can be shown to be given by

h3

3

∣∣∣∣
i+(1=2); j

=
2
3
h2i; jh

2
i+1; j

hi+1; j + hi; j
(18)

with similar expressions for the h3=3|i−(1=2); j, h3=3|i; j+(1=2) and h3=3|i; j−(1=2) terms.

3.2. Temporal discretization

Ideally, time-stepping schemes for the numerical solution of transient �ows should be both
e�cient and accurate. The former ensures that small time steps are avoided when the so-
lution varies slowly while the latter should enable the error to be controlled throughout the
solution process. Most previous numerical studies of lubrication-type �ows have focussed on
increasing the e�ciency of the solution and, in particular, overcoming the stability require-
ment for explicit schemes that the time step �t should be O(�4)—an impractical restriction
when even moderate spatial resolution is employed. Several studies have achieved this using
alternating-direction implicit (ADI) algorithms employing alternate sweeps in each direction
so that only a banded system of equations need be solved at each time step [5]. These time-
splitting algorithms enable time steps several orders of magnitude larger than O(�4) to be
used successfully.
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Few studies have reported attempts to control the accuracy of time-stepping schemes and
it is only very recently that an estimate of the local truncation error has been used when
solving equations of the form (11) and (14) to test whether they are being solved to a
speci�ed error tolerance [26]. The latter’s scheme, however, does not optimize the time step
for a given error tolerance. The present work addresses this issue by using time-stepping
based on local error estimates from an implicit, second-order method which reduces to Heun’s
method [19] in the case of a �xed time step. This uses an estimate of the local truncation
error, obtained from the di�erence between this solution and an explicit predictor, to increase
the time step in a controlled manner whilst at the same time minimizing the computational
expense associated with repeated time step failure.
This approach requires Equation (16) to be rewritten as a system of di�erential–algebraic

equations in the form

@hi; j
@t

=F(hi; j; pi; j; hi±1; j ; pi±1; j ; hi; j±1; pi; j±1) (19)

for each (i; j) in the computational domain. The predictor stage is fully explicit, second-order
accurate in time and proceeds by solving

hn+1i; jPredict =�
2hn−1i; j + (1− �2)hni; j +�tn+1(1 + �)F(hni; j; pni; j ; hni±1; j ; pni±1; j ; hni; j±1; pni; j±1) (20)

where �=�tn+1=�tn and the superscript n denotes data at the nth time step. It can be shown,
via a Taylor series expansion of Equation (20), that the local truncation error (LTE) for the
predictor stage is given by

(LTEPredict)i; j=
(�tn+1)2�tn(1 + �)

6
@3hi; j
@t3

∣∣∣∣
t=tp

(21)

where the third derivative term is evaluated at a time tp ∈ (tn; tn+1).
The solution stage is implicit and is also second-order accurate in time, given by

hn+1i; j − �tn+1

2
F(hn+1i; j ; p

n+1
i; j ; h

n+1
i±1; j ; p

n+1
i±1; j ; h

n+1
i; j±1; p

n+1
i; j±1)

= hni; j +
�tn+1

2
F(hni; j; p

n
i; j ; h

n
i±1; j ; p

n
i±1; j ; h

n
i; j±1; p

n
i; j±1) (22)

for which the LTE is

(LTE)i; j=
−1
12
(�tn+1)3

@3hi; j
@t3

∣∣∣∣
t=tc

; tc ∈ (tn; tn+1) (23)

As described in Reference [19], the assumption that the third-order derivative term varies only
a small amount over the time step enables the LTE to be estimated by

(LTE)i; j=
1

1 + 2((1 + �)=�)
(hn+1i; j − hn+1i; jPredict ) (24)

Following Reference [27], this expression is used to obtain an estimate of the overall truncation
error by �nding its Euclidean norm, ‖LTE‖, which is then used to specify the next time step
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throughout the domain, �tn+2, via

�tn+2 =0:9�tn+1
(
TOL

‖LTE‖
)1=3

(25)

if ‖LTE‖6TOL, whereas if ‖LTE‖¿TOL the iteration is restarted with half the current time
step.
The implicit system of algebraic equations (17) and (22) are solved at each time step using

the FAS multigrid method described below.

3.3. The multigrid solver

There is much in the literature surrounding multigrid methods (e.g. References [13–18]),
su�ce it to say that they are fast solvers, the essence of which is to use a simple iterative
technique as a smoother, not as a solver, to reduce high frequency errors on the computational
grid while lower frequency errors are smoothed out on a succession of coarser computational
grids. A hierarchy of grids is de�ned, G0; G1; : : : ; GL say, where the grid spacing halves from
one grid to the next and where G0 denotes the coarsest grid and GL the �nest. Note that,
for all solutions presented later the coarsest grid level G0 is a 17× 17 one so that the �nest
grid level GL, i.e. the one on which the solution is actually sought, has 2L+4 + 1 nodes in
either direction or, in terms of the �ne grid parameter introduced above, kf=L+4. Multigrid
solutions are reported where the �nest grid level ranges from G2 with 65× 65 nodes to G6
with 1025× 1025 nodes. For example, if a multigrid solution is desired on a 129× 129 grid
then this corresponds to grid G3 with intermediate solutions obtained on grids G0 (17× 17),
G1 (33× 33) and G2 (65× 65) before the �nal solution on G3 is actually obtained. Note that
the grid spacing associated with each grid level Gk is uniform and equal in both directions
and simply �k =1=(2k+4).
The non-linear discretized Equations (17) and (22) are solved using a combination of

the full approximation storage (FAS) method and full multigrid technique [13–18]. Figure 2

: Full Multigrid interpolation

Ncyc

: smoothing
: exact solution

G3, 0 G3, 1 G3, 2 G3, 3

G3

G2

G1

G0

Figure 2. Description of the full multigrid technique when solutions are obtained on grid G3 with 129
nodes in either direction. G3;0 represents the initial solution on G3 at the previous time step, G3;1 the

solution after the �rst �ne grid V-cycle, G3;2 the solution after two V-cycles, etc.
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illustrates the structure of the solution process over the four grid levels that are used when
a solution on, say, grid level G3, i.e. 129× 129, is obtained. An important advantage of this
technique is that an initial guess to the solution at a given level is provided by the interpolation
of the solution on the next coarsest level. At all but the coarsest grid level a �xed number of
V-cycles are applied, the same number of V-cycles, Ncyc, being applied at all intermediate grid
levels Gk for which 0¡k¡L. At the coarsest level an exact non-linear solver may be applied
or a large number of smoothing iterations performed: in this work the former approach is
adopted, based upon Newton’s method. At the very beginning of the full multigrid cycle the
solution from the previous time step is used to provide an initial residual and as a starting
point for the multigrid procedure.
In order to explain clearly the steps taken during a single V-cycle, the governing equations

(17) and (22), at the particular grid level k, may be rewritten in the following way:

L
p
k (h

n+1
k ; pn+1

k
) = 0 (26)

Lh
k (h

n+1
k ; pn+1

k
) =fhk (h

n
k ; p

n
k
) (27)

where the �lm thicknesses and pressure at the nth time step tn are known and are given by
hnk = {hnijk} and pnk = {pnijk}, and fhk corresponds to the right-hand side of Equation (22).
Given h0

n+1
k
and p0n+1k as an initial guess to the solution of Equations (26) and (27), the

computed values after completion of the V-cycle are: h1
n+1
k and p1n+1k . Each V-cycle within

the solution process may be de�ned in a recursive way using precisely the same pseudo-code
formalism as in Trottenberg [28]: In functional notation this V-cycle from level k may be
written as

(h1
n+1
k ; p1

n+1
k
)=FASCYC(k; h0

n+1
k
; p0n+1k ; f

h
k ; f

p
k ; npre; npost)

The function FASCYC may be broken down into three distinct stages:

1. Presmoothing stage:
• Apply npre times a red–black Gauss–Seidel scheme [29] to a linearized form of
Equations (26) and (27) so that, in functional notation:

(h̃0
n+1

k
; p̃0

n+1

k
)=RELAXnpre(h0

n+1
k
; p0n+1k ; f

h
k ; f

p
k )

2. Coarse grid correction stage:
• Compute the defects:

dhk =f
h
k − Lh

k (h̃0
n+1

k
; p̃0

n+1

k
); dpk =f

p
k − L

p
k (h̃0

n+1

k
; p̃0

n+1

k
)

(Note that in our case, from Equation (26), fpL =0, however this is not the case in
general for k¡L, as shown below.)

• Restrict the defect to the next coarse grid level using a half-weighting restriction
operator, Rk−1k [13]:

dhk−1 =R
k−1
k (dhk); dpk−1 =R

k−1
k (dpk )
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• Restrict h̃0
n+1

k
and p̃0

n+1

k
in the same way:

h̃0
n+1

k−1 =R
k−1
k (h̃0

n+1

k
); p̃0

n+1

k−1 =R
k−1
k (p̃0

n+1

k
)

• Compute the right-hand side at the next coarser level:

fhk−1 =d
h
k−1 +Lh

k−1(h̃0
n+1

k−1; p̃0
n+1

k−1); fpk−1 =d
p
k−1 +L

p
k−1(h̃0

n+1

k−1; p̃0
n+1

k−1)

• Compute an approximate solution ŵhk−1; ŵpk−1 of the coarse grid equation on Gk−1:
Lh
k−1(w

h
k−1; w

p
k−1) =f

h
k−1 (28)

L
p
k−1(w

h
k−1; w

p
k−1) =f

p
k−1 (29)

If k=1: �nd the exact solution using the coarse grid solver.

If k¿1: solve Equations (28) and (29) by performing the FAS cycle using h̃0
n+1

k−1
and p̃0

n+1

k−1 as an initial approximation:

(ŵhk−1; ŵ
p
k−1)=FASCYC(k − 1; h̃0

n+1

k−1; p̃0
n+1

k−1; f
h
k−1; f

p
k−1; npre; npost)

• Compute the corrections:

v̂hk−1 = ŵ
h
k−1 − h̃0

n+1

k−1; v̂pk−1 = ŵ
p
k−1 − p̃0n+1k−1

• Interpolate the corrections using the bilinear interpolation operator, I kk−1 [13]:
v̂hk = I

k
k−1(v̂

h
k−1); v̂pk = I

k
k−1(v̂

p
k−1)

• Compute the corrected approximation on Gk :

h0
n+1
k
= h̃0

n+1

k
+ v̂hk ; p0n+1k = p̃0

n+1

k
+ v̂pk

3. Postsmoothing stage:
• Apply npost times the relaxation scheme:

(h1
n+1
k ; p1

n+1
k
)=RELAXnpost(h0

n+1
k
; p0n+1k ; f

h
k ; f

p
k )

The associated relaxation scheme consists of a single Newton iteration solved with a �xed
number of sweeps (npre or npost) of Red–Black Gauss–Seidel. The linearized form of equations
(26) and (27) is obtained by computing the local Jacobian only, so that each relaxation sweep
(in the pre-smooth stage for example) proceeds by solving:

@Lh
k

@hn+1ijk

�h+
@Lh

k

@pn+1ijk

�p=fhk − Lh
k (h0

n+1
k
; p0n+1k ) (30)

@Lp
k

@hn+1ijk

�h+
@Lp

k

@pn+1ijk

�p=fpk − L
p
k (h0

n+1
k
; p0n+1k ) (31)
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for �h and �p. Hence a new approximation to the solution is given by: h̃0i; j
n+1

k = hn+10i; jk
+�h,

p̃0i; j
n+1
k =pn+10i; jk

+ �p. The Neumann boundary conditions are treated by introducing ghost
nodes outside the computational domain and by imposing the values of droplet thicknesses
and pressure at these points to be the same values as those at the boundary.
At the coarsest level (G0), the discretized equations are solved using a Newton iteration

scheme. The iteration is de�ned in terms of the Jacobian matrices:

A=
@Lp

0

@pn+1
0

; B=
@Lp

0

@hn+10

; C=
@Lh

0

@pn+1
0

; D=
@Lh

0

@hn+10

(32)

Given wh0; w
p
0 as �rst approximations to the solution of the coarse grid Equations (28) and

(29), then increments to wh0; w
p
0 , �w

h
0 and �w

p
0 , respectively, are obtained by solving the

linearized Newton iteration equations:

A�wp0 + B�w
h
0 =f

p
0 − L

p
0 (w

h
0; w

p
0 ) (33)

C�wp0 +D�w
h
0 =f

h
0 − Lh

0 (w
h
0; w

p
0 ) (34)

Solution of these equations is obtained as follows. Setting �wh0 = 0 in (33), an initial approx-
imation to �wp0 is: �w

p′

0 =A
−1(fp0 − L

p
0 (w

h
0; w

p
0 )), while the equation for �w

h
0 is obtained

by eliminating �wp0 from Equations (33) and (34), viz.

(D − C A−1B)�wh0 =f
h
0 − Lh

0 (w
h
0; w

p
0 )− C�wp′

0 (35)

Equation (35) is solved to yield �wh0 and w
h
0; w

p
0 are updated according to w

h
0 →wh0 + �w

h
0

and wp0 →wp0 + �w
p′

0 − A−1B�wh0, respectively. The iteration proceeds until the norm√
|fp0 − L

p
0 (w

h
0; w

p
0 )|2 + |fh0 − Lh

0 (w
h
0; w

p
0 )|2

n

where n is the number of unknowns in one direction, is su�ciently small. In this work we
found that a relative reduction in the residual of just 10−3 (compared to the initial residual
from the solution at the previous time step) to be su�cient, however much greater accuracies
are easily obtainable if required.

4. RESULTS

The e�ciency and accuracy of the multigrid method is �rst demonstrated by comparison with
a series of analytical and previously reported numerical results for droplet spreading �ows.
New results are then presented which show how the method can be readily applied to simulate
droplet motion on substrates with topographic and=or wettability inhomogeneities.
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Figure 3. Ratio of ELTE to TLE for Equation (36) as a function of time, t, and TOL.

4.1. Accuracy of the local error estimate

The accuracy of the estimate of LTE, Equation (24), is demonstrated by comparing it with
the true local error for the ordinary di�erential equation

dh
dt
+
1
5
h
t
=0; h(t0)= h0 (36)

This equation is chosen since its analytical solution

h(t)= h0

(
t0
t

)0:2
(37)

is of exactly the same form as Tanner’s [30] closed form solution for �lm thickness at the
centre of an axisymmetrically spreading droplet over a homogeneous substrate—see later. If hn
is the numerical solution of Equation (36) obtained at time tn using the temporal discretization
scheme described above, then the true local error is the di�erence between hn+1, the numerical
solution obtained at time tn+1, and the corresponding analytical solution for the same initial
condition h(tn)= hn, namely hn(tn=tn+1)0:2.
Figure 3 shows how the ratio of the estimated local truncation error, ELTE, (24) to the

true local error, TLE, varies with time and prescribed error tolerance, TOL. It demonstrates
that the estimate consistently over predicts the true error and that decreasing the tolerance
increases the accuracy of the estimate to the extent that for TOL¡10−4 the estimated local
error is within 30% of its true value.

4.2. E�ciency of the numerical method

The e�ciency of the multigrid and time-stepping procedures are demonstrated by consider-
ing the problem of droplet spreading on a horizontal substrate for a partially wetting sys-
tem where the equilibrium contact angle (�e¿0) and the e�ects of gravity are neglected
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(Bo=0). For the particular case of a spreading axisymmetric droplet, centred initially at
(x; y)= (0:5; 0:5), the �lm thickness at the droplet centre, h0(t), is given [30] by

h0(t)=
K
t�

for t¿0 (38)

where K and � (=0:2) are spreading constants, a result veri�ed by Lelah and Marmur’s
[31] experiments which found 0:166�60:32. The axisymmetric lubrication equations for this
problem were subsequently solved numerically by Schwartz and Eley [8] who investigated
the in�uence of the precursor �lm thickness h∗ on the spreading rate parameters K and � in
Equation (38). Here, this �ow is studied by solving the lubrication equations (11) and (14)
for particular case of �=0:005, (n;m)= (3; 2), the initial droplet pro�le is given by

h(r)= max
(
5

(
1− 320

9
r2

)
; h∗

)
(39)

where r is the radius of the footprint of the droplet on the surface of the substrate. An
equilibrium contact angle of 1:53◦ was chosen so that h0(t)→ 1 at large times. Note that,
apart from the initial pro�le no axisymmetry is imposed in the numerical solutions.
The following sequence of �gures elucidate the e�ect of the multigrid parameters on the

convergence of solutions by plotting the relative residuals at the �nest grid level, which are
de�ned as the ratio of the residual at the �nest grid level after a given number of �ne grid
V-cycles compared to the initial residual at the beginning of the time step.
The e�ect of the number of V-cycles (Ncyc) at intermediate grid levels (0¡k¡L) on the

relative residuals, where the �nest grid level is 129× 129 (i.e. L=3) and the �xed (for this
comparison) time step is 10−9, is shown in Figure 4(a). It clearly demonstrates the bene�t of
using at least one V-cycle at the intermediate level as the relative residuals are reduced by
almost two orders of magnitude compared to the case where no intermediate V-cycle is used.
Although more than one V-cycle does not improve noticeably the convergence of the solution
at the �nest level but using a higher order interpolation scheme such as bicubic interpolation
for the Full Multigrid interpolation instead of bilinear interpolation may increase the bene�t
of using more intermediate V-cycles. The initial increase in relative residuals is due to the
fact that at the beginning of the solution process the initial guess, which corresponds to the
solution at the previous time step, satis�es (26) exactly since its right-hand side does not
change. Thus, after a �rst cycle, despite a reduction of the residuals for Equation (27), the
residuals of Equation (26) can only increase. The magnitude of this initial increase in relative
residuals is critical to the success of the solution procedure and therefore, a larger number
of presmoothing sweeps is performed for the �rst V-Cycle (npre = 4) while two presmoothing
sweeps only are found to be su�cient for the following V-cycles: npost is set to 2 regardless
of the cycle number.
The e�ect of the grid size at the �nest level is explored next for a �xed number of

intermediate V-cycles (Ncyc = 3) and �tn+1 =10−9. Figure 4(b) shows that for all grids, with
L ranging from 3 (129× 129) to 5 (513× 513), the ratio of the residuals after the completion
of the V-cycle is e�ectively independent of the �nest grid level. Closer analysis of the data
reveals that this ratio takes a value of approximately 1=20. Figure 4(c) shows that (�xed) time
step size has little e�ect on the convergence history until a threshold value �tmax =5× 10−8

is reached. The initial increase in relative residuals becomes steeper and above this threshold
value the solution procedure fails. This limiting value of the time step depends on both the
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Figure 4. E�ect of multigrid parameters on the convergence history of solutions. (a) E�ect
of the number of V-cycles (Ncyc) at the intermediate grid levels on the convergence history
of solutions. The �nest grid level, G3, is 129× 129 and �tn+1 = 10−9. (b) E�ect of the
�nest grid level on the convergence history of solutions with Ncyc = 3 and �tn+3 = 10−9.
(c) E�ect of time step on the convergence history of solutions with Ncyc = 3 and the �nest
grid level, G3, is 129× 129. (d): Dependence of CPU time for a typical time step as a
function of the total number of unknowns. Flow conditions: evolution of a partially wetting
droplet with Bo=0, �=0:005, �e =1:53◦, h∗=0:04 and (n; m)= (3; 2), TOL=10−4.

mesh size and how advanced the solution is: as �ner and �ner grids are used, �tmax decreases
and at later times, �tmax increases. Note that the calculations are for very early times where
the spreading motion is most active and the demands on the multigrid solver are most severe.
An additional advantage therefore of the adaptive time-stepping scheme described previously
is that the time-step selected is always smaller than this limiting time step as no restart of
the solution procedure is ever necessary.
In light of the above, all subsequent results were obtained using �ve V-cycles at each level.

Although clearly over-cautious, this has only a small additional computational cost since most
of the computational time is spent performing cycles at the �nest level.
Figure 4(d) shows how the CPU time for a typical time step depends on grid density

and demonstrates that one of the most important potential advantages of Multigrid methods,
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Figure 5. (a) E�ect of precursor �lm thickness h∗ on time step evolution. The �nest
grid level is G4, i.e. 257 × 257. (b) Multigrid solutions of the droplet thickness at
the centre of a partially wetting droplet as a function of time, t, and grid density
with h∗ = 0:04. (c) Multigrid solutions of the droplet thickness at the centre of a
partially wetting droplet as a function of time, t, and precursor �lm thickness h∗.
The �nest grid level is G4, i.e. 257× 257. Simulation parameters: Bo=0, �=0:005,

(n; m)= (3; 2), �e =1:53◦ and TOL=10−4.

namely that CPU time varies linearly (i.e. the slope of the line in Figure 4(d) ≈ 1) with
the total number of unknowns, is achieved by the solver. As noted above, when allied to
ever-increasing computational power, this feature of the solver is particularly important when
small-scale phenomena need to be simulated e�ciently and accurately.
Figure 5(a) illustrates how the time step varies as a function of h∗, showing that after the

solution has settled down the time-stepping scheme enables substantial e�ciency gains to be
realized at later times and that the value of h∗ has only a marginal in�uence in the sense that
the larger h∗ values permit larger time steps to be used near the equilibrium state.
The accuracy of the solutions is considered next. Figure 5(b) investigates the e�ect of

grid size on the droplet thickness h0(t) for simulations where h∗=0:04 and TOL=1× 10−4.
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Table I. The e�ect of precursor �lm thickness h∗ on spreading rate parameters: �nest
grid level is 257× 257, with TOL=10−4.

h∗ K � Rescaled K

0.05 0.353 0.196 0.615
0.04 0.362 0.194 0.627
0.02 0.385 0.191 0.661
0.01 0.407 0.187 0.691
0.005 0.41 0.187 0.696

It shows that the solution converges with respect to the spatial discretization as the grid
is progressively re�ned and that the solutions on the three �nest grid levels di�er by only
approximately 1%. The in�uence of the precursor �lm thickness h∗ is shown in Figure 5(c),
for solutions obtained with a �nest grid level of 257× 257, TOL=10−4 and adaptive time
stepping. It illustrates that after an initial phase the droplet thickness h0(t) obeys the expected
power law relationship h0(t)=K=t�, where the coe�cients K and � are shown in Table I.
Note that, owing to the time scaling employed in the present study, in order to compare these
results with those of Schwartz and Eley [8] the K values must be multiplied by the factor
0:059−�. The � values are found to be close to the expected value of 0.2, [30], and the values
of K also compare well with the values K =0:61 (h∗=0:05) and 0.68 (h∗=0:005) obtained
by Reference [8].

4.3. Large bond number spreading of an axisymmetric droplet

Comparison is made between numerical predictions and corresponding analytical solutions for
the case of axisymmetric spreading �ow of a completely wetting droplet, centred initially at
(x; y)= (0:5; 0:5), over a horizontal substrate when gravitational e�ects dominate over surface
tension ones so that the Bond number, Bo, is large. In this case the lubrication equations for
the droplet thickness h can be reduced to the following second-order p.d.e. for axisymmetric
�ow

@h
@t
=
Bo
3r

@
@r

[
rh3

@h
@r

]
(40)

in terms of r, the radial distance from the centre of the substrate.
The idealized case where the initial droplet pro�le is in the form of a Dirac delta function,

given by

h(r; t=0)=0 for r ¿ 0 and 2�
∫ ∞

0
rh dr=V (41)

where V is the dimensionless volume of the droplet, has been analysed previously in [32]. The
latter study showed that Equation (40) could be solved analytically by de�ning the similarity
variable �= r(3=BoV 3t)1=8, to yield

h(�)=0:753
(
V
tBo

)1=4
(0:799− �2)1=3 (42)
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Figure 6. (a) Droplet thickness at the centre of a completely wetting droplet h0(t): comparison between
the numerical predictions and the similarity solution (42). (b) Cross-sectional thickness pro�les across
a completely wetting droplet: comparison between numerical predictions (symbols) and the similarity
solution (42). (c) Cross-sectional thickness (h) pro�les for a completely wetting droplet over a circu-
lar topography: comparison between numerical predictions (symbols) and the similarity solution (44).
Simulation parameters: Bo=1066, V =0:261, �nest grid level equals 129× 129 and TOL=2:5× 10−3.

Figure 6(a) compares numerical predictions of the droplet thickness at its centre, h0(t), as
a function of time with the similarity solution (42) for the case Bo=1066 and V =0:261.
The former are obtained with a �nest grid level of 129× 129 and TOL=2:5× 10−3. The
simulation uses the initial pro�le (39) since it is both sharply peaked and mimics, to some
extent, the initial conditions in the analytical solution whilst at the same time guaranteeing
that h0(t) changes substantially before the droplet �ows out of the computational domain(
06r6

√
2=2

)
.

As expected, the agreement between the simulation and similarity solution is initially poor
(for t¡3× 10−7), due to the di�erences between the initial conditions in the two solutions,
but improves at later times and eventually becomes very good beyond this initial phase where
the maximum �lm thickness h0(t) decreases in proportion to t−1=4 at later times. Similar
agreement is also seen in Figure 6(b), which shows the development of the thickness pro�le
across the droplet, where the agreement at later times is very good everywhere except near the
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contact line. The latter discrepancies are caused by the small, but non-zero, surface tension
in the simulations which acts to reduce curvature in its vicinity.

4.4. New results for droplet spreading over topographies

The remaining results concern examples of the �ow of droplets over topographic features.
Consider �rst the previous problem of axisymmetric �ow of a completely wetting droplet at
high Bond number extended to the case of a completely enveloped circular topography. It
can be shown that the similarity solution (42) for the �ow in the absence of a topography is
only slightly modi�ed by its presence since the governing equation (40) simply becomes

@h
@t
=
Bo
3r

@
@r

[
rh3

@(h+ s)
@r

]
(43)

where s= s(r) is the topographic pro�le. Since s(r) does not vary with time it is easy to
show that the similarity solution with a topography is given by

h(�)=0:753
(
V
t Bo

)1=4
(0:799− �2)1=3 − s(r) (44)

where, once again, �= r(3=BoV 3t)1=8.
The topography s(r) is given by

s(r)= s0

T (r)− T
(√
2=2

)
T (0)− T

(√
2=2

)
 (45)

where s0 is its height and, following Reference [33], T (r) is an arctangent function

T (r)= tan−1
(
�
2	

(
1− r

rt

))
(46)

where the parameter 	 controls the steepness of the topography and rt =Rt=L0 is its radius.
Figure 6(c) shows a comparison between numerical predictions of the droplet thickness (h)

pro�le across the �lm and the similarity solution (44) for the particular case of a topography
with s0 = 0:2, 	=0:2 and rt =0:1, the former having been obtained with a �nest grid level
of 129× 129 and TOL=2:5× 10−3. As in the related case without a topography, results are
obtained for Bo=1066 and V =0:261, while the droplet thickness pro�le (39) is modi�ed so
that the initial free surface pro�le is the same in both cases, i.e.

h+ s= max
(
5

(
1− 320

9
r2

)
; s(r) + h∗

)
(47)

The �gure shows similar behaviour to that reported in Figure 6(b) for the case without a
topography.
Next droplet spreading over substrates containing three-dimensional, rectangular topogra-

phies is explored. The extent of the topography is speci�ed with respect to the reference
point (x1; y1)= (X1; Y1)=L0 as indicated in Figure 1. Following Reference [2] the topography
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s(x; y) is de�ned in terms of transformed co-ordinates, (x∗; y∗) say, with origin at the centre
of the topography and given by

x∗= x − x1 − 0:5lt; y∗=y − y1 − 0:5wt (48)

The topography s(x; y) is taken as

s(x; y) =
s0
b0

(
tan−1

(
x∗ − lt=2
	lt

)
+ tan−1

(−x∗ − lt=2
	lt

))

×
(
tan−1

(
y∗ − wt=2
	lt

)
+ tan−1

(−y∗ − wt=2
	lt

))
(49)

where 	 controls its steepness and

b0 = 4 tan−1
(
1
2	

)
tan−1

(
A
2	

)
(50)

In all of the results which follow the initial droplet pro�les are of the same form as equation
(39) modi�ed to take account of the presence of the topography, namely

h+ s= max
(
5

(
1− 320

9
r2

)
; s(x; y) + h∗

)
(51)

where r is the radial distance from the centre of the substrate.
Figures 7 and 8 show the evolution of the free surface (h + s) pro�les and associated

contours for the �ow of a completely wetting droplet, centered initially at (x; y)= (0:5; 0:5),
over a topographic peak (s0 = 0:5) and trench (s0 = − 0:5), respectively, with lt =0:2, A=1,
(x1; y1)= (0:3; 0:3) and 	=0:01. In the former case, the droplet spreads axisymmetrically
until it meets the edge of the topography when it experiences an additional pressure gradi-
ent that causes it to spread preferentially from the topography to the substrate in a direc-
tion normal to the edge of the topography. Since the droplet meets the bottom left hand
corner of the topography last of all, liquid in this region is the last to experience the
additional pressure gradient, causing a small cusp in the contact line in this region. In
the case of the spreading over a trench, Figure 8, the edge of the topography presents
an adverse pressure gradient which reduces the speed of contact line advancement across
its edges and, since liquid near the bottom left hand corner is again the last to expe-
rience this adverse pressure gradient, the droplet swells slightly in its bottom left hand
region.
Figures 9 and 10 show free surface pro�les and associated contours for the �ow of a

droplet, centred initially at (x; y)= (0:5; 0:5), over a topography de�ned by s0 = 0:5, lt =0:5,
A=1, (x1; y1)= (0; 0) and 	=0:01, where the wettability on the topography di�ers from that
of the rest of the substrate. In the former case the liquid fully wets the substrate (�e =0◦)
while only partially wetting the topography (�e =11:5◦). In Figure 9 it is evident that the
droplet recedes from the topography in order to increase its contact angle towards the equilib-
rium value of 11:5◦ whereas it advances on the substrate in order to lower its contact angle
towards the equilibrium value of 0◦. Taken together these e�ects cause the droplet to �ow
o� the topography, as shown in Figure 9(c). Figure 10 shows the e�ect of interchanging the
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Figure 7. Free surface (h+ s) pro�les (left) and associated contours (right) for a droplet spreading over
a topographic peak with s0 = 0:5, lt =0:2, A=1, (x1; y1)= (0:3; 0:3) and 	=0:01. (a) t=3× 10−7, (b)
t=1× 10−5, (c) t=1× 10−3. The density of the �nest mesh is 257× 257, h∗=0:02 and TOL=10−4.

wettabilities of the topography and substrate. In this case the contact line on the topography
advances further across it so as to reduce the contact angle towards the equilibrium value of
0◦, while that on the substrate recedes, the net e�ect of which is to cause the droplet to �ow
up (climb) onto the topographic peak, Figure 10(c).
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Figure 8. Free surface (h+s) pro�les (left) and associated contours (right) for a droplet spreading over a
topographic trench with s0 =−0:5, lt =0:2, A=1, (x1; y1)= (0:3; 0:3) and 	=0:01. (a) t=3× 10−7, (b)
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Figure 9. Free surface (h + s) pro�les (left) and associated contours (right) for a droplet spreading
over a topographic peak with s0 = 0:5, lt =0:5, A=1, (x1; y1)= (0:0; 0:0) and 	=0:01, with �e =11:5◦
on the topography and �e =0◦ on the rest of the substrate. (a) t=1:2× 10−5, (b) t=5× 10−5,

(c) t=5× 10−4. The density of the �nest mesh is 257× 257, h∗=0:02 and TOL=10−4.
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Figure 10. Free surface (h+ s) pro�les (left) and associated contours (right) for spreading of a droplet
onto a topographic peak with s0 = 0:5, lt =0:5, A=1, (x1; y1)= (0:0; 0:0) and 	=0:01, with �e =0◦
on the topography and �e =11:5◦ on the rest of the substrate. (a) t=1:2× 10−5, (b) t=1× 10−4,

(c) t=5× 10−4. The density of the �nest mesh is 257× 257, h∗=0:02 and TOL=10−4.
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Figure 11. Free surface (h + s) pro�les (left) and associated contours (right) for the motion of a
fully-wetting droplet, down a plane inclined at 28:6◦ to the horizontal, over a topographic peak with
s0 = 0:5, lt =0:2, A=1, (x1; y1)= (0:6; 0:4) and 	=0:01. Dotted lines indicate the inclination of the
substrate with respect to the horizontal. (a) t=1:3× 10−5, (b) t=1:6× 10−4, (c) t=2:6× 10−4. Finest

grid density is 257× 257 and TOL=10−4.

The last �gure, Figure 11, considers the �ow of a fully wetting droplet, initially centred
at (x; y)= (0:5; 0:5), down a plane inclined at 28:6◦ to the horizontal over a topographic
peak de�ned by s0 = 0:5, lt =0:2, A=1, (x1; y1)= (0:6; 0:4) and 	=0:01. As expected, the
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gravitational force causes the droplet to spread over and eventually engulf the topography.
The results also show that the droplet spreads more quickly along the edges of the topography
causing its contact line downstream to become heart-shaped, Figure 11(b), indeed similar free
surface pro�les have been reported in recent experimental and theoretical investigations of
gravity-driven �ows over fully submerged topographies [34, 25]. At later times the branches of
the contact line behind the topography coalesce and form a straight contact line perpendicular
to the direction of spreading, Figure 11(c).

5. CONCLUSIONS

The numerical solution of the time-dependent lubrication equations for the case of droplet
spreading is complicated by the need to overcome, in an e�cient way, the severe restrictions
encountered in relation to the use of permissible time increments consequent on two main
factors: sti�ness introduced by surface tension and the need to resolve short length scales
close to wetting lines.
The answer here, has been to develop and employ an e�cient, fully implicit, multigrid

solver embodying adaptive time-stepping selection, the latter optimizing the choice of time
step in a controlled manner subject to a speci�ed temporal error tolerance. A wide variety
of previously reported analytical and numerical results, together with a series of new ones
concerning the motion of droplets on heterogeneous substrates, have been used to validate
successfully the approach.
The technological requirement for the simulation of �ows past ever smaller topographic

and wetting heterogeneities, and combinations of the same, makes the e�ciency of such a
numerical formulation extremely attractive, particularly where high resolution and hence �ne
meshes are essential. Firstly, time-step selection is e�cient and enables the relatively small
time steps required, for example, at the beginning of a simulation or when the �ow is evolving
quickly to be increased in a controlled and accurate manner when conditions permit. Second,
the bene�t of the multigrid solver is such that its fully implicit nature ensures that the larger
time step estimates given by the adaptive time-stepping selection procedure can actually be
used in practice, while also o�ering the attractive feature that the CPU time taken to solve
the discretized equation set, at each time step, is simply O(N ) where N is the number of
unknowns.
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